7 research outputs found

    Physicochemical and Sensorial Evaluation of Meat Analogues Produced from Dry-Fractionated Pea and Oat Proteins

    Get PDF
    Pea protein dry-fractionated (PDF), pea protein isolated (PIs), soy protein isolated (SIs) and oat protein (OP) were combined in four mixes (PDF_OP, PIs_OP, PDF_PIs_OP, SIs_OP) and extruded to produce meat analogues. The ingredients strongly influenced the process conditions and the use of PDF required higher specific mechanical energy and screw speed to create fibrous texture compared to PIs and SIs. PDF can be conveniently used to produce meat analogues with a protein content of 55 g 100 g-1, which is exploitable in meat-alternatives formulation. PDF-based meat analogues showed lower hardness (13.55-18.33 N) than those produced from PIs and SIs (nearly 27 N), probably due to a more porous structure given by the natural presence of carbohydrates in the dry-fractionated ingredient. PDF_OP and PIs_PDF_OP showed a significantly lower water absorption capacity than PIs OP and SIs_OP, whereas pea-based extrudates showed high oil absorption capacity, which could be convenient to facilitate the inclusion of oil and fat in the final formulation. The sensory evaluation highlighted an intense odor and taste profile of PDF_OP, whereas the extrudates produced by protein isolates had more neutral sensory characteristics. Overall, the use of dry-fractionated protein supports the strategies to efficiently produce clean-labeled and sustainable plant-based meat analogues

    Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria

    Get PDF
    Cold environments are populated by organisms able to contravene deleterious effects of low temperature by diverse adaptive strategies, including the production of ice binding proteins (IBPs) that inhibit the growth of ice crystals inside and outside cells. We describe the properties of such a protein (EfcIBP) identified in the metagenome of an Antarctic biological consortium composed of the ciliate Euplotes focardii and psychrophilic non-cultured bacteria. Recombinant EfcIBP can resist freezing without any conformational damage and is moderately heat stable, with a midpoint temperature of 66.4 °C. Tested for its effects on ice, EfcIBP shows an unusual combination of properties not reported in other bacterial IBPs. First, it is one of the best-performing IBPs described to date in the inhibition of ice recrystallization, with effective concentrations in the nanomolar range. Moreover, EfcIBP has thermal hysteresis activity (0.53 °C at 50 μm) and it can stop a crystal from growing when held at a constant temperature within the thermal hysteresis gap. EfcIBP protects purified proteins and bacterial cells from freezing damage when exposed to challenging temperatures. EfcIBP also possesses a potential N-terminal signal sequence for protein transport and a DUF3494 domain that is common to secreted IBPs. These features lead us to hypothesize that the protein is either anchored at the outer cell surface or concentrated around cells to provide survival advantage to the whole cell consortium

    Effect of quality properties of added gluten on the texture and sensory properties of rye and buckwheat breads

    Get PDF
    Received: February 11th, 2023 ; Accepted: July 13th, 2023 ; Published: September 10th, 2023 ; Correspondence: [email protected] producers use vital wheat gluten to enhance the quality of their products. However, commercial isolated glutens could have different properties and therefore influence the properties of the final products. As studies on the quality properties of glutens and their effect on the final baking products are limited, the aim of this study was to characterize commercial isolated glutens and the effect of their addition on the textural and sensory properties of rye and buckwheat breads. Three glutens were tested for water binding capacity (WBC), gluten index (GI), protein sedimentation, and resistance using modified methods. Afterwards, three different bread recipes were developed and commercial glutens were tested in each model bread. The commercial glutens had different physicochemical and viscoelastic properties, which were below the typical values of native glutens (GI was 36‒46%, extensibility- 48‒78 mm). Breads also had different sensorial and textural properties, which diverged more during storage. The sour taste intensity and springiness of the rye bread increased, while its moistness, adhesiveness, and typical odour intensity decreased. Fresh and staled rye toast breads were softer and more porous. The buckwheat bread was the most stable, though it was drier and springier after storage. The effect of gluten was specific to the bread recipe and was uncorrelated with the gluten quality properties individually. However, gluten with the intermediate values of WBC, sedimentation, and extensibility, also resulted in breads with intermediate sensory properties. Thus, it is possible to enhance specific properties of bread using commercial glutens with different quality attributes

    Impact of Fermentation and Phytase Treatment of Pea-Oat Protein Blend on Physicochemical, Sensory, and Nutritional Properties of Extruded Meat Analogs

    No full text
    Plant materials that are used for the production of extruded meat analogs are often nutritionally incomplete and also contain antinutrients, thus there is a need to explore alternative plant proteins and pre-treatments. This study demonstrates application of phytase and fermentation to a pea-oat protein blend with a good essential amino acid profile and subsequent texturization using extrusion cooking. Enzymatic treatment reduced the content of antinutrient phytic acid by 32%. Extrusion also degraded phytic acid by up to 18%, but the effect depended on the material. Differences in physicochemical, sensorial, and textural properties between untreated and phytase-treated extruded meat analogs were small. In contrast, fermented material was more difficult to texturize due to degradation of macromolecules; physicochemical and textural properties of extrudates were markedly different; sensory analysis showed enhancement of flavor, but also detected an increase in some unwanted taste attributes (bitterness, cereal and off-taste). Phytic acid was not degraded by fermentation. Analysis of volatile compounds showed extrusion eliminated volatiles from the raw material but introduced Maillard reaction products. Overall, phytase treatment and fermentation demonstrated the potential for application in extruded meat analogs but also highlighted the necessity of optimization of process conditions

    Identification and functional analysis of a novel Antarctic ice binding protein

    No full text
    Cold environments are populated by organisms able to contravene deleterious effects of low temperature by diverse adaptive strategies, including the production of ice binding proteins (IBPs) that inhibit the growth of ice crystals inside and outside cells. We describe the properties of such a protein (EfcIBP) identified in the metagenome of an Antarctic biological consortium composed of the ciliate Euplotes focardii and psychrophilic non-cultured bacteria. Recombinant EfcIBP can resist freezing without any conformational damage and is moderately heat stable, with a midpoint temperature of 66.4 °C. Tested for its effects on ice, EfcIBP shows an unusual combination of properties not reported in other bacterial IBPs. First, it is one of the best-performing IBPs described to date in the inhibition of ice recrystallization, with effective concentrations in the nanomolar range. Moreover, EfcIBP has thermal hysteresis activity (0.53 °C at 50 μm) and it can stop a crystal from growing when held at a constant temperature within the thermal hysteresis gap. EfcIBP protects purified proteins and bacterial cells from freezing damage when exposed to challenging temperatures. EfcIBP also possesses a potential N-terminal signal sequence for protein transport and a DUF3494 domain that is common to secreted IBPs. These features lead us to hypothesize that the protein is either anchored at the outer cell surface or concentrated around cells to provide survival advantage to the whole cell consortium. © 2016 Federation of European Biochemical Societie
    corecore